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Abstract—We investigated a small isolated hybrid power system 
that used a parallel combination of dispatchable and non-
dispatchable power generation sources.  The non-dispatchable 
generation came from a nature-dependent wind turbine, and the 
dispatchable generations were a fuel cell and a diesel generator.  
On the load side, the non-dispatchable portion was the village 
load, and the dispatchable portion was the energy storage, which 
could be in many different forms (e.g., space/water heater, 
electrolysis, battery charger, etc.) The interaction among 
different generation sources and the loads was investigated. 
Simulation results showed the effect of the proposed system on 
voltage and frequency fluctuations. 

 
Index Terms—wind turbine, diesel, fuel cell, power generation, 
parallel operation, hybrid generation 

I.  INTRODUCTION 
ince ancient history, wind-turbine technology has been 
used to improve the quality of life.  For example, people 

have used wind power to pump water or mill grains.  More 
recently, wind turbines have been used for water or oil 
pumping [1], battery charging, or utility power generation. An 
important aspect of wind turbine power generation is that it 
does not pollute air or water. Wind power is also well suited 
for remote areas with low population, where there is little 
incentive for a utility to build transmission lines. 

Hybrid power systems have been used very successfully to 
reduce pollution and to conserve diesel fuel consumption [2-
3].  For this paper, we analyzed a hybrid power system 
consisting of a 225-kW wind turbine, a 400-kW diesel 
generator, and a 75-kW fuel cell array to provide power to a 
village.  A dispatchable load was used to help balance the 
power in the system.  An example of dispatchable load to 
regulate system frequency can be found in reference [4]. 

In the following sections, we describe the overall system 
and each individual generation source, as well as the 
interaction among the generation sources and loads.  

II.  SYSTEM CONFIGURATION  
A block diagram of the system is shown in Fig. 1.  The 

wind turbine was operated with a constant frequency generator 
(induction generator) with a capacity of 225 kW about 1200 
rpm. It was a stall-regulated wind turbine.  The diesel engine 
had a rated capacity of 400 kW.  The fuel cell was rated at 75 
kW, and the local loads were mostly residential and water 
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pump.  A dispatchable load was available to balance out the 
real power in the system. 

The diesel generator provided a smooth generation, 
whereas the output power of the wind turbine generation 
depended on the wind velocity.  The wind velocity was 
reflected in the power generation; for example, if the wind 
varied smoothly, the output also changed smoothly.  On the 
other hand, the output power fluctuated if there was wind 
turbulence.  In the wind farm setting, the collective output 
power fluctuation was minimal [5]; however, in a small 
isolated operation with a weak power network, the impact of 
power fluctuation on power quality can be significant.  In this 
paper, we do not discuss power quality.  Interested readers 
should refer to the available standard on this issue [6]. 

The fuel cell was installed to help regulate the frequency in 
the system.   The fuel cell was controlled to produce a unity 
power factor; thus, the voltage regulation was completely 
dependent upon excitation of the generator and the capacitors 
available in the power grid. 
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Fig. 1.  Physical diagram of the analyzed power system 
 
The load could be divided into three different types.  The 

first was the residential type of load for lighting, heater, or 
small appliances.  The nature of this load was very tolerant to 
disturbance (i.e., it was immune to low power quality power, 
fluctuating voltage, and fluctuating frequency).  The second 
type of load was the industrial or heavy load, such as 
compressors, water pumps, and intermittent large loads.  
Although insensitive to power quality, this type of load can be 
the cause of voltage and frequency fluctuations.  Another type 
of load was the dispatchable load, which may consist of an 
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electric heater, a battery charger, or an electrolyzer to provide 
hydrogen to the fuel cell.  

III.  COMPONENTS OF THE POWER SYSTEM  
The following sections of this paper describe each of the 

three different power sources: diesel generator, wind-turbine 
generator, fuel cell.  

A.  Diesel Generator 
From an electrical system point of view, a diesel generator 

can be represented as a prime mover and generator.  Ideally, 
the prime mover has the capability to supply any power 
demand up to rated power at constant frequency.  The 
synchronous generator connected to it must be able to keep the 
voltage constant at any load condition.   

Figure 2 is a block diagram of the diesel generator. The 
diesel engine kept the frequency constant by maintaining the 
rotor speed. When power demand fluctuates the diesel 
generator could vary its output via fuel regulation to its 
governor. The synchronous generator must control its output 
voltage by controlling the excitation current.  Thus, the diesel 
generating system, as a unit, must be able to control its 
frequency and its output voltage.  The ability of the diesel 
generator to respond to frequency changes was affected by the 
inertia of the diesel gen-set, the sensitivity of the governor, 
and the power capability of the diesel engine.  The ability of 
the synchronous generator to control its voltage was affected 
by the field-winding time constant, the availability of the DC 
power to supply the field winding, and the response of voltage 
control regulation. 
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Fig. 2.  Diesel generator Ccntrol block diagram 

 
 

B.  Wind-Turbine Generator 
The power generated by the wind turbine was defined as 

follows: 
35.0 VACP pρ=     (1) 

where: 

ρ = density of air 
A = swept area of the blade 
Cp = performance coefficient 
V = wind speed. 
The torque generated by the turbine was represented as: 

s

PT
ω

=      (2) 

where: 
T = mechanical torque at the turbine side 
P = output power of the turbine 
ωs = rotor speed of the wind turbine. 
 
A typical Cp curve characteristic defined Cp as a function 

of the tip-speed  ratio (TSR) given by equation 3:  

V
R

TSR sω
=        (3) 

where R was the radius of the wind turbine rotor. A typical 
power versus wind speed characteristic of the wind turbine is 
illustrated in Fig. 3.   
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Fig. 3.  A typical wind turbine output versus wind speed. 

 
Because this turbine was constant pitch, the wind turbine 

relied on the blade-stall condition in the high wind speed 
region to limit the output power.  The generator used was an 
induction generator.  Thus, the rotor speed varied within a 
very small range or was practically constant.  In the high 
speed, the tip speed ratio was expected to be small because the 
wind speed increased at constant rotor rpm, thus the power 
coefficient, Cp, was also very small.  The output power was 
self-regulated up to 225 kW.  Note that in the higher wind 
speeds (>15 m/s), the output power of the wind turbine was 
very flat.  In the lower wind speeds, the output wind turbine 
was almost linear. 

C.  Fuel Cell 
A group of proton exchange membrane (PEM) fuel-cell 

stacks were applied to enhance the performance of the hybrid 
system. The operation principle of PEM fuel cell can be found 
in the literature, [e.g., 7,8]. 

A MATLAB/SIMULINK-based dynamic model for the 
PEM fuel cell [9] was adapted to the Vissim packet [10] for 
this study. 
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A block diagram of the fuel-cell power-generation system 
that we used is given in Fig. 4. Fuel cell stacks were connected 
in series/parallel combination to achieve the rating desired. 
The output of the fuel cell array was connected to a DC bus 
through a DC/DC converter. The DC bus voltage was kept 
constant via a DC bus voltage controller. The DC bus voltage 
was then interfaced with the utility power grid or a custom 
load through a DC/AC inverter, together with its voltage and 
frequency regulators. 
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Fig 4.  Block diagram of a fuel-cell power system 

D.  Dispatchable Load 
We assumed that the dispatchable load was a simple dump-

load capable of absorbing real power from the hybrid power 
system.  The purpose of this dump-load was to quickly absorb 
any excess wind power, thus helping to control the system 
frequency.  In this paper, the dump load was modeled as an 
adjustable power sink and not modeled as a specific load, such 
as an electric heater, electrolyzer, battery charger, or a 
combination of all. 

IV.  CONTROL PHILOSOPHY  
The control philosophy in this system was based on 

maximizing the nature-dependent energy sources and reducing 
the diesel fuel consumption.  Thus, the power generated by the 
wind turbine was dictated by the wind, and the diesel and fuel 
cell were operated to balance the offset between the source 
and the load consumption.  The wind turbine was properly 
compensated to help with the voltage regulation.  Because of 
the nature of the control of the diesel generator, the diesel 
generator was used to control the frequency (via its governor) 
and the output voltage at the power network (via its 
excitation). 

Dispatchable loads, such as an electrolyzer, battery charger, 
and heater, were deployed as a dumpload to ensure that the 
generator always carried minimum load, avoiding negative 
power output of the diesel generator (i.e. thus it is not possible 
for the wind turbine to drive the synchronous generator into 
synchronous motor). 

 

A.  No Fuel Cell Connected  
In this simulation, no fuel cell contributed to the power 

system.  The power was generated by the diesel generator and 
the wind turbine.  The wind speed varied and so did the power 
generated by the wind turbine (Fig. 5).  The wind speed 
reached its peak at 14 s with output power of about 210 kW.  
The lowest output power was reached at about 34 s.  The 
reactive power compensation was shown to be adequate. 
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Fig. 5.  Real and reactive power output of WTG 

 
Fig. 6 shows the real and reactive power output of the 

diesel generator.  The wind turbine output variation was 
reflected in the real and reactive power output.  The total 
output of both the diesel generator and the wind turbine output 
were used to compensate for the load and the water pump.  
The start-up of the water pump was reflected by power spike 
at t = 10 s.   
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Fig. 6.  Real and reactive power output of diesel gen-set 

 
The output power of the diesel generator also exhibited the 

power required by the village load shown in Fig. 7.  The real 
and reactive power consumed by the village load varied with 
time, reaching maximum power at 500 kW. This load was 
modeled as a constant impedance load.   Between t = 23 s and 
t = 25 s, the village load was under-served because of lower 
wind speed during that time frame; the wind turbine generated 
about 150 kW, the water pump drew 70 kW, and the diesel 
generator reached its rated power.   

The lack of generation in the time frame shown is also 
reflected by the frequency and voltage traces shown in Fig. 8.  
The frequency dip shows that there was a sufficient deficiency 
in power generation that could not be fulfilled by temporarily 
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stored energy in the generator inertia, resulting in frequency 
decline.  The frequency returned to normal when the load was 
reduced to 400 kW.  The start-up of the water pump did not 
affect the frequency very much because the surge during the 
water pump start-up was very short.  The voltage dip, 
however, was significant as a result of large reactive power 
demand during water pump start-up.  When there was a 
sudden reduction in village load, both the excitation and the 
governor of the diesel could not react fast enough, resulting in 
an increased step in the voltage and frequency (around t = 25 
s). 
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Fig. 7.  Village load versus time 
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Fig. 8.  Voltage and the frequency of the systems 

 
 

B.  Fuel Cell Connected to Support the Load.  
When the fuel cell was connected to the network, the power 

source came from three different sources.  The wind turbine, 
the diesel generator, and the fuel cell output were combined to 
supply the load.  A comparison of figures 8 and 9 shows the 
difference in the voltage and the frequency before and after 
the fuel cell was installed in the system. 

During start-up of the water pump, the voltage dip was the 
same as the voltage dips without the fuel cell installed.   The 
load was fully served during the entire observation.  The 
voltage and frequency dip was previously seen when the load 

was underserved (between t = 23 s and t =25 s).  The load 
reduction did not show a voltage and frequency jump between 
t = 25 s and t = 30 s) as shown previously when the load was 
underserved. 
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Fig. 9.  Voltage and the frequency of the systems with fuel cell installed 

  
As shown in Fig. 10, the village load was fully served as a 

result of the additional power provided by the fuel cell.  It was 
expected that the fuel cell would compensate for the power dip 
resulting from the wind power reduction (t = 23 s).   
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Fig. 10. Village load with fuel cell installed 
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Fig. 11.  Output power of fuel cell, water pump 

 
The fuel cell did not respond very well during the start-up 

of the water pump (Figure 11, sharp increase of load demand), 
but it did respond appropriately during low wind generation 
(between t = 23 s to t = 25 s) and when the village load was 
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reduced (between t = 25 sto t = 30 s).   During a very short 
period of time (t = 17 s to t = 23 s), the dump load (shown as 
negative power) was deployed to prevent the frequency 
drifting up (during high wind).  As mentioned above, the 
dump load could be substituted with a battery charger or 
electrolyzer, but this is not modeled at present. 

 

C.  Wind speed is reduced. 
When the wind speed decreased, the power deficit was 

divided between the two power sources (the diesel and the fuel 
cell).  The fuel cell and the diesel had to generate higher 
power in order to maintain the power balance in the system. 

The wind speed presented in the previous sections was 
decreased by 3 m/s.  Fig. 12 shows the comparison of the two 
wind speeds.  The impact of reducing the wind speed could be 
very significant in the lower wind speed region because of the 
linearity of the wind turbine output in this region.  In the 
higher wind speed, the wind turbine output was very flat (in 
the stall region); thus, the difference in the output power 
would not be very significant. 

In this scenario, the fuel cell contributed more power to the 
network.  Figure 13 shows that the voltage and frequency 
regulation was very good.  The voltage dip during water pump 
start-up did not change, and the frequency and voltage during 
low wind (between t = 23 s to t = 25 s) and during load 
reduction (between t = 25 s and t = 30 s) was very stable. 

 
 

  

Hybrid Project

Time (sec)
0 10 20 30 40 50

W
in

d 
Sp

ee
d 

(m
/s

)

0

5

10

15

20

 
 

Fig. 12. Wind speed reduced by 3 m/s 
 
The output power of the wind turbine decreased 

significantly, especially in the lower wind speed region.  The 
maximum output power of the wind turbine was 200 kW, and 
the minimum output power of the wind turbine was 50 kW.  
The contribution of the fuel cell was necessary to compensate 
for the lack of power generated from the wind turbine.  Fig. 14 
shows the real and reactive power generated by the wind 
turbine.  The reactive power was shown to be positive at some 
places.  This was possible because the wind turbine was 
compensated by a fixed capacitor.  At lower output (lower slip 
due to lower winds), the induction generator required less 
reactive power; thus, there was a small export of reactive 
power from the wind turbine when it generated lower power. 
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Fig. 13. Voltage and frequency at lower wind speed. 
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Fig. 14.  Real and reactive power of the wind turbine at reduced wind.  
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Fig. 15.  Fuel cell operation at higher power. 
 
Fig. 15 shows the output of the fuel cell.  The fuel cell must 

operate at higher output power when the wind turbine 
generation is low.   The fuel cell operated at about 60 kW in 
the lower wind speed region (t > 28 s). 

V.  CONCLUSION  
This paper investigates the parallel operation of a wind 

turbine, a diesel generator, and a fuel cell array.  The wind 
turbine contributed significantly to the load, thus reducing the 
fuel consumption of the diesel generator when the wind speed 
was available.  

In this case study, when the fuel cell was not included, the 
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voltage and frequency deviations of the wind/diesel/fuel cell 
system could be significant, thus affecting the system power 
quality. The diesel generator had to operate near its rated 
power, thus limiting its capability to adjust the output 
frequency.  With the fuel cell installed, the system voltage and 
frequency variations were minimized, and the system had 
good voltage and frequency regulation. 
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